Electron spin relaxation due to reorientation of a permanent zero field splitting tensor.

نویسندگان

  • Nathaniel Schaefle
  • Robert Sharp
چکیده

Electron spin relaxation of transition metal ions with spin S> or =1 results primarily from thermal modulation of the zero field splitting (zfs) tensor. This occurs both by distortion of the zfs tensor due to intermolecular collisions and, for complexes with less than cubic symmetry, by reorientational modulation of the permanent zfs tensor. The reorientational mechanism is much less well characterized in previous work than the distortional mechanism although it is an important determinant of nuclear magnetic resonance (NMR) paramagnetic relaxation enhancement phenomena (i.e., the enhancement of NMR relaxation rates produced by paramagnetic ions in solution or NMR-PRE). The classical density matrix theory of spin relaxation does not provide an appropriate description of the reorientational mechanism at low Zeeman field strengths because the zero-order spin wave functions are stochastic functions of time. Using spin dynamics simulation techniques, the time correlation functions of the spin operators have been computed and used to determine decay times for the reorientational relaxation mechanism for S=1. In the zfs limit of laboratory field strengths (H(Zeem)< or =H(Zeem), and that its neglect can lead to serious errors in the interpretation of NMR-PRE data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NMR paramagnetic relaxation due to the S=5/2 complex, Fe(III)-(tetra-p-sulfonatophenyl)porphyrin: central role of the tetragonal fourth-order zero-field splitting interaction.

The metalloporphyrins, Me-TSPP [Me=Cr(III), Mn(III), Mn(II), Fe(III), and TSPP=meso-(tetra-p-sulfonatophenyl)porphyrin], which possess electron spins S=3/2, 2, 5/2, and 5/2, respectively, comprise an important series of model systems for mechanistic studies of NMR paramagnetic relaxation enhancement (NMR-PRE). For these S>1/2 spin systems, the NMR-PRE depends critically on the detailed form of ...

متن کامل

Triplet State Delocalization in a Conjugated Porphyrin Dimer Probed by Transient Electron Paramagnetic Resonance Techniques

The delocalization of the photoexcited triplet state in a linear butadiyne-linked porphyrin dimer is investigated by time-resolved and pulse electron paramagnetic resonance (EPR) with laser excitation. The transient EPR spectra of the photoexcited triplet states of the porphyrin monomer and dimer are characterized by significantly different spin polarizations and an increase of the zero-field s...

متن کامل

A mononuclear transition metal single-molecule magnet in a nuclear spin-free ligand environment.

The high-spin pseudotetrahedral complex [Co(C3S5)2](2-) exhibits slow magnetic relaxation in the absence of an applied dc magnetic field, one of a small number of mononuclear complexes to display this property. Fits to low-temperature magnetization data indicate that this single-molecule magnet possesses a very large and negative axial zero-field splitting and small rhombicity. The presence of ...

متن کامل

Experimental signature of phonon-mediated spin relaxation in a two-electron quantum dot.

We observe an experimental signature of the role of phonons in spin relaxation between triplet and singlet states in a two-electron quantum dot. Using both the external magnetic field and the electrostatic confinement potential, we change the singlet-triplet energy splitting from 1.3 meV to zero and observe that the spin relaxation time depends nonmonotonously on the energy splitting. A simple ...

متن کامل

Field Dependent Electron and Quadrupole Spin Relaxation: A Unified Treatment

This article reviews recent theoretical treatments of field dependent relaxation processes in complex systems containing mutually coupled dipolar, quadrupole, and electron spins. The presented approaches are based on an analogy between the Hamiltonian formalisms for quadrupole and zero field splitting interactions. Limitations of the presented treatments, resulting from the validity conditions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 121 11  شماره 

صفحات  -

تاریخ انتشار 2004